Study of UPFC and DPFC to less harmonic distortion

Mr. S.NATARAJAN
Research Scholar, Department of EEE
Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India.

Dr.S.BASKAR
Professor, Department of Electrical and Electronics Engineering,
Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, India.
Email: jayasuriya9407@gmail.com

Abstract : The technological advancements in power electronic devices and circuits lead to complete automation of both the power transmission/Distribution system as well as automatic control of industrial and domestic loads, which in turn increase nonlinear load currents drawn from the supply system. Additional heating losses, low power factor, low efficiency, higher temperature etc., are some of the results of these nonlinear currents. A new D-FACTS device is proposed to reduce the total harmonic distortion in the transmission system near load points. A comparative analysis will also be made with the existing FACTS device, UPFC.

Keywords: Non linear loads, total harmonic distortion, UPFC, DPFC.

I. INTRODUCTION

The attention of today’s Power system engineers is towards the analysis of harmonics present in the currents and voltages of the power system. This is due to the fact that for a typical industry, the percentage of non-linear loads over the total load is ever increasing. This increased proportion of non-linear load has prompted more stringent recommendations in IEEE Std. 519 and stricter limits imposed by utilities. It is necessary to create awareness of harmonic issues to increase the reliability of power system. The effects of these harmonics include distortions in voltage, current, increased power losses, thermal stress, etc.

The time varying impedance characteristics of diodes, silicon controlled rectifiers, thyristors, PWM systems, and induction and arc furnaces for various applications, mainly causes the distortions in voltage waveforms. The spikes at constant intervals as multiples of the fundamental frequency are known as Harmonics. If 50 Hz is the fundamental frequency, then the 3rd harmonic is five times that frequency 50, i.e. 150 Hz. Likewise, the 5th harmonic is five times the fundamental, i.e. 250 Hz, and so on. Harmonics can be discussed in terms of current or voltage. The amount of harmonics present in the original wave can be determined by the formula of Total Harmonic Distortion (THD). The following is the formula for calculating the THD for voltage:

\[\text{THD} = \sqrt{\frac{I_2^2 + I_3^2 + I_4^2 + \ldots}{I_1^2}} \]

There are several methods available to reduce this harmonics which includes passive filter design, shunt compensators, UPFC etc. Here in this paper first an UPFC is modeled in MATLAB/SIMULINK for reducing total harmonic distortion. A new D-FACTS based device, Distributed Power Flow Controller is then proposed for the reduction of total harmonic distortion and its output being compared with the results of UPFC. MATLAB/SIMULINK model of a 4 bus system shown in figure 1 is modeled first, and its behavior without any controller is observed under the events of Voltage Sag and Voltage Swell.

II. UNIFIED POWER FLOW CONTROLLER

FACTS-devices provide a better adaptation to varying operational conditions and improve the usage of existing
installations. Worldwide for various applications FACTS-devices have been introduced. One of such application is mitigation of power quality disturbance, mainly harmonic distortion.

An UPFC is a static device which controls the voltage, current, real power and reactive power simultaneously. It consists of a shunt converter and series converter connected through a DC link. It acts simultaneously as a phase shifting and a shunt compensating device.

![Figure 2: UPFC connected to the load bus of the transmission system for reducing THD](image)

Harmonic analysis is done with the modeled UPFC for the four bus system in the process of mitigation of Voltage Sag and Swell using FFT analysis. And it is observed that higher order harmonics present in the output were more. Also the coordinated controlling of shunt and series converter is typical to model. Also it is observed from the literature survey that the common DC link used in the UPFC increasing its cost. Hence a new controller is proposed in this paper namely DPFC.

III. DISTRIBUTED POWER FLOW CONTROLLER

The common DC link between shunt and series converter has been removed to obtain flexible control of the converter. Also the concept of D-FACTS is introduced in the design of series compensation. To improve the reliability instead of using one single series converter multiple series converters have been used for the series compensation as the length of transmission line is considerably long it is better to use more series compensators of low rating in order to improve the reliability.

The proposed DPFC consists of STATCOM as a shunt controller and SSSC as Series controller. Active power exchange between the shunt and series controllers has been done through the common connection of the AC terminals, which is the transmission line.

![Figure 3: Structure of DPFC](image)

IV. SIMULATION RESULTS

![Figure 5: THD resulted during mitigation of Voltage Swell with UPFC](image)

![Figure 6: THD resulted during mitigation of Voltage Sag with UPFC](image)
5. Conclusion

In this paper a comparative analysis is done for the reduction of total harmonic distortion using two controllers, UPFC and DPFC. From the simulation results it is observed that there is a great reduction in the THD when DPFC is used rather than with UPFC. The reduction is considerably high in both the mitigation processes, Voltage Sag and Voltage Swell. Also it is observed that DPFC is resulting in fast convergence in the mitigation process.

References

