ABSTRACT

The Internet of Things is a network of ever growing physical objects (such as connected devices and smart devices), embedded with electronics, software, sensors and network connectivity that enables these objects to collect and exchange data.

IoT is commonly used for smart home, data acquisition, smart energy monitoring, industrial automation, and a variety of platforms.

This project describes the architecture of an Internet of things based Industrial Power load Controlling & Monitoring System in the power system.

The goal of this project is to visualize and monitor the power consumption Internet webpage by integrating smart plugs, sensors, Internet of Things (IoT) devices and GATEWAY which enables the communication between the various smart plugs and the web server hosting the monitoring system application, thereby facilitating the user to act accordingly to save power or to provide the reliable power supply by making maximum use of Load Efficiency.

1. INTRODUCTION

With the business competition being increasingly fierce today, manufacturers have to face the same problem that production cost without adversely affecting the product yield or quality. Electricity is the cornerstone of modern industry, which is an inevitable expense in production for every factory or plant. Almost all production devices require electricity, such as heating, lighting, conveyors, motors, etc. Compared to relatively stable labor and service cost, Energy has become one of the most elusive and hard-to-manage costs in manufacturing, with high levels of cost variability and supply volatility. However, differing from the unmaintainable raw material cost, the energy expense can be compressed in a relatively manageable range by several approaches, which decrease the negative impact on the production cost.

A Industrial Load forecasted to practically used in power systems for unit commitment, real-time dispatch, maintenance, optimization of power systems on IoT based Load Operation and Controlling. the system will become stable and if load on a system achieves the maximum productivity. As a result, many utility companies loads monitoring to use certain operation and at certain time on IoT.
2. OBJECTIVE

This paper objectives our work on developing an energy usage improvement by good use of electric power on-peak and off-peak. The work aims at optimizing the devices operating schedule for manufacturers to reduce the energy cost. An application is developed that prompts user to configure the parameters of devices and can prepare hourly time schedules the devices based on the genetic algorithms. The system outputs the optimal daily power usages and corresponding cost under different algorithms, which can help the plants or factories to reduce the energy cost and controlling industrial loads via internet.

3. PLANT LOAD COMPUTATION

A Power load Scheduling and controlling two methodology are:

- Embedded system
- Wireless control topology

4. ELECTRICAL LOADS

- In industrial plant loads are motors, heaters, compressors, conveyors, etc. from the main production facilities. The loads through Control and monitoring are remotely by internet at any where and any time.

5. LOADS DUTY

- Continuous load: The loads normally keep 24 hours uptime one day
- Intermittent load: The loads only operate a fraction of 24 hours
- Standby load: Loads usually stand by or are rarely used under normal condition

6. ELECTRICAL LOAD PARAMETERS

There are several parameters that determine the energy usage of electrical devices.

- Rated power: It is continuous power output when the device is in normal working, which is set by the manufacturer as the maximum power output of the device.
- Power factor: It is the ratio the real power of the load to apparent power in the AC circuit. Normally, its value ranges from -1 to 1.
- Efficiency: It is the value that the real power output divided by the total power output, where the rest usually transforms into heat to the ambient environment.
- In-use ratio: In practical production, devices might stay idle during work hour. It is the proportion of operation duration of each device.

7. PLANT ENERGY OPTIMIZER

We implement a tool called Plant Energy Optimizer (PEO) to search for optimal schedule for a plant.

For each individual device, the device type, device name, rated power, in-use ratio, power factor, efficiency, and work hour is required as input parameter. For continuous devices and standby devices, the work hours are set 24 hours and 0 hours as default, respectively.

In addition, if production lines run in the plants, the parameters of each device in one production line, as mentioned should be specified with Control and monitoring are remotely by internet of things.

8. INTERNET OF THINGS (IoT) IN INDUSTRIES

IoT Deals with real time optimization of production and supply chain networking with sensors and control systems. In case of process

industries, it automates the process controls, service information systems and operator tools using digital controllers to enhanced productivity. Tasks of industrial internet of things are,

- Real time monitoring and control processes
- Deploying machines and controllers with proprietary communication.
- Maximize safety, security and reliability through high precision automation and control

9. CLOUD REMOTING

Cloud Remoting Describes a Remoting object over Internet using the web service gateway is very straightforward. Remoting over internet using the web service as gateway. The web service gateway requires install the following assemblies are:

- **WebServiceChannelLib**, this is a Custom remoting channel on the client side to forward a remoting message to the web service gateway over internet (outgoing message)
- **WebServiceListener**, this is a web service (gateway) to listen an incoming message from the client side and forward it to the local remoting infrastructure (incoming message)
- **Web.config**, This is Web Service Gateway Local Remoting Client (Sender And Receiver Configuration Of Two Clients)

10. EXISTING SYSTEM

- Load are scheduled by the DCS
- Controls are taken by the individual trippers

11. PURPOSE OF SYSTEM

The main purpose of this project is to control any load through the Internet network over cloud remotely on the basic principle of the Internet of things (IOT).

Wi-Fi Module execute the received commands based on which the load gets activated through TRIAC and Opto-coupler interfaced to Wi-Fi Module. The status of the load also will be displayed and Status updated in IOT

12. ESP8266 WIFI Module

- The ESP8266 Wifi module is used to get connected to a wifi network for internet access. The ESP-01 is used as a Wifi adapter to give wireless internet access
- The ESP8266 comes loaded with firmware that can accept AT commands over the serial interface to do various functions
- The RX and TX pins of the ESP8266 module are connected to pin 9 and 8 (arduino nomenclature). Since these pins are not the hardware UART pins, the SoftwareSerial library is used to create a soft serial port.
- The AT commands, receive and pass-on/interpret the response, thus providing a convenient way of calling these functions.
13. BLOCK DIAGRAM

14. WORKING
- AC supply given to the input of SMPS. SMPS convert a AC form to DC form. SMPS board will give 5V DC out from 230V AC.
 - SMPS connect to the voltage regulator. Its regulate the voltage in particular range.
 - WIFI module connect to the voltage regulator. Its used for both data transfer and control the circuit.
 - Its execute the received commands based on which the load gets activated through TRIAC and Opto-coupler interfaced to Wi-Fi Module.
 - Opto-coupler transfer the electrical signal for both direction(wifi module → triac).
 - In this unit connect to the load
 - This connection made in closed loop.

15. HARDWARE REQUIREMENTS
- Wi-Fi Module
- Opto-coupler

16. SOFTWARE REQUIREMENTS
- ESP Loader
- LUA Loader
- ESP Flasher
- LUA Program
- Webpage

17. ADVANTAGES
- Power load scheduling useful for Saving the energy.
- Its used for load balancing.
- Its reduce the human power.

18. CONCLUSION
Preparing a load schedule helps in determining the amount of power required for a particular unit. Load control to maximum productivity.

19. REFERENCES